Graphs in the study of 1-dimensional continua and span

L. C. Hoehn (loganh@nipissingu.ca)

Nipissing University

September 2, 2017 Workshop on Graphs and Continua Theory University of Pittsburgh

Continuum ≡ compact connected metric space Graph vs. combinatorial graph

Continuum ≡ compact connected metric space Graph vs. combinatorial graph

Definition

X has *span zero* if for any continuum C and any maps $f, g : C \to X$ with $f(C) \subseteq g(C)$, there exists a point $t \in C$ such that f(t) = g(t).

Continuum \equiv compact connected metric space Graph vs. combinatorial graph

Definition

X has span zero if for any continuum C and any maps $f,g:C\to X$ with $f(C)\subseteq g(C)$, there exists a point $t\in C$ such that f(t)=g(t).

Definition

X is *chainable* if for any $\varepsilon > 0$, X has a chain cover of mesh $< \varepsilon$.

Continuum \equiv compact connected metric space Graph vs. combinatorial graph

Definition

X has *span zero* if for any continuum C and any maps $f,g:C\to X$ with $f(C)\subseteq g(C)$, there exists a point $t\in C$ such that f(t)=g(t).

Definition

X is *chainable* if for any $\varepsilon > 0$, X has a chain cover of mesh $< \varepsilon$.

Lelek's problem (1971): Is every continuum with span zero chainable?

Continuum \equiv compact connected metric space Graph vs. combinatorial graph

Definition

X has span zero if for any continuum C and any maps $f,g:C\to X$ with $f(C)\subseteq g(C)$, there exists a point $t\in C$ such that f(t)=g(t).

Definition

X is *chainable* if for any $\varepsilon > 0$, X has a chain cover of mesh $< \varepsilon$.

Lelek's problem (1971): Is every continuum with span zero chainable?

• No (H. 2011)

Continuum \equiv compact connected metric space Graph vs. combinatorial graph

Definition

X has span zero if for any continuum C and any maps $f,g:C\to X$ with $f(C)\subseteq g(C)$, there exists a point $t\in C$ such that f(t)=g(t).

Definition

X is *chainable* if for any $\varepsilon > 0$, X has a chain cover of mesh $< \varepsilon$.

Lelek's problem (1971): Is every continuum with span zero chainable?

- No (H. 2011)
- Yes for hereditarily indecomposable continua (Oversteegen-H. 2016)

Definition

Let Σ be a set. A Σ -labelled graph is a combinatorial graph $G = \langle V, E \rangle$ and a function $\sigma : V \to \Sigma$.

Definition

Let Σ be a set. A Σ -labelled graph is a combinatorial graph $G = \langle V, E \rangle$ and a function $\sigma : V \to \Sigma$.

Consider $\Sigma = \{a, c, b_t : t \in [0, 1]\} \subset T_0$ (picture)

Definition

Let Σ be a set. A Σ -labelled graph is a combinatorial graph $G = \langle V, E \rangle$ and a function $\sigma : V \to \Sigma$.

Consider $\Sigma = \{a, c, b_t : t \in [0, 1]\} \subset T_0$ (picture)

Proposition (H. 2011)

Suppose G is placed ε -close to T_0 according to σ .

Definition

Let Σ be a set. A Σ -labelled graph is a combinatorial graph $G = \langle V, E \rangle$ and a function $\sigma : V \to \Sigma$.

Consider $\Sigma = \{a, c, b_t : t \in [0, 1]\} \subset \mathcal{T}_0$ (picture)

Proposition (H. 2011)

Suppose G is placed ε -close to T_0 according to σ . If there is a chain cover of G of mesh $<\frac{1}{2}-\varepsilon$, then there is a graph homomorphism $\varphi:G\to A$ to an arc graph A such that:

Definition

Let Σ be a set. A Σ -labelled graph is a combinatorial graph $G = \langle V, E \rangle$ and a function $\sigma : V \to \Sigma$.

Consider $\Sigma = \{a, c, b_t : t \in [0, 1]\} \subset T_0$ (picture)

Proposition (H. 2011)

Suppose G is placed ε -close to T_0 according to σ . If there is a chain cover of G of mesh $<\frac{1}{2}-\varepsilon$, then there is a graph homomorphism $\varphi:G\to A$ to an arc graph A such that:

1 If $\varphi(v_1) = \varphi(v_2)$, then $\sigma(v_1) = \sigma(v_2) = a$ or $\sigma(v_1) = \sigma(v_2) = c$ or $\sigma(v_1), \sigma(v_2) \in \{b_t : t \in [0,1]\}$; and

Definition

Let Σ be a set. A Σ -labelled graph is a combinatorial graph $G = \langle V, E \rangle$ and a function $\sigma : V \to \Sigma$.

Consider $\Sigma = \{a, c, b_t : t \in [0, 1]\} \subset T_0$ (picture)

Proposition (H. 2011)

Suppose G is placed ε -close to T_0 according to σ . If there is a chain cover of G of mesh $<\frac{1}{2}-\varepsilon$, then there is a graph homomorphism $\varphi:G\to A$ to an arc graph A such that:

- If $\varphi(v_1) = \varphi(v_2)$, then $\sigma(v_1) = \sigma(v_2) = a$ or $\sigma(v_1) = \sigma(v_2) = c$ or $\sigma(v_1), \sigma(v_2) \in \{b_t : t \in [0,1]\}$; and
- ② If $v_1v_2v_3 \stackrel{\sigma}{\mapsto} ab_tc$, $v_1'v_2'v_3' \stackrel{\sigma}{\mapsto} ab_{t'}c$, and $\varphi(v_i) = \varphi(v_i')$ for i = 1, 2, 3, then $|t t'| < \frac{1}{2}$.

Idea: Develop an analagous combinatorial consequence for a T-cover of a graph, where T is a fixed tree (other than an arc).

Idea: Develop an analagous combinatorial consequence for a T-cover of a graph, where T is a fixed tree (other than an arc).

Question

Let $n \ge 3$. Is there a continuum with span zero which is (n+1)-od-like but not n-od-like?

Idea: Develop an analagous combinatorial consequence for a T-cover of a graph, where T is a fixed tree (other than an arc).

Question

Let $n \ge 3$. Is there a continuum with span zero which is (n+1)-od-like but not n-od-like?

Question

Let T_1 , T_2 be trees such that T_1 does not embed in T_2 . Is there a continuum with span zero which is T_1 -like but not T_2 -like?

Idea: Develop an analagous combinatorial consequence for a T-cover of a graph, where T is a fixed tree (other than an arc).

Question

Let $n \ge 3$. Is there a continuum with span zero which is (n + 1)-od-like but not n-od-like?

Question

Let T_1 , T_2 be trees such that T_1 does not embed in T_2 . Is there a continuum with span zero which is T_1 -like but not T_2 -like?

Question

Is there a continuum with span zero that is not T-like for any tree T?

Idea: Develop an analagous combinatorial consequence for a T-cover of a graph, where T is a fixed tree (other than an arc).

Question

Let $n \ge 3$. Is there a continuum with span zero which is (n+1)-od-like but not n-od-like?

Question

Let T_1 , T_2 be trees such that T_1 does not embed in T_2 . Is there a continuum with span zero which is T_1 -like but not T_2 -like?

Question

Is there a continuum with span zero that is not T-like for any tree T?

Question

Can every continuum with span zero be embedded in \mathbb{R}^2 ?

An ε -map is a map $f: X \to Y$ such that for each $y \in Y$, $\operatorname{diam}[f^{-1}(y)] < \varepsilon$.

An ε -map is a map $f:X\to Y$ such that for each $y\in Y$, $\operatorname{diam}[f^{-1}(y)]<\varepsilon.$

Theorem (Alexandroff)

Let X be an n-dimensional compact metric space. For any $\varepsilon > 0$, there exists an n-dimensional polyhedron P and an ε -map $f: X \to P$.

An ε -map is a map $f:X\to Y$ such that for each $y\in Y$, $\operatorname{diam}[f^{-1}(y)]<\varepsilon.$

Theorem (Alexandroff)

Let X be an n-dimensional compact metric space. For any $\varepsilon > 0$, there exists an n-dimensional polyhedron P and an ε -map $f: X \to P$.

If X is a 1-dimensional continuum, then for any $\varepsilon>0$, there exists a graph G and an ε -map $f:X\to G$.

An ε -map is a map $f:X\to Y$ such that for each $y\in Y$, $\operatorname{diam}[f^{-1}(y)]<\varepsilon.$

Theorem (Alexandroff)

Let X be an n-dimensional compact metric space. For any $\varepsilon > 0$, there exists an n-dimensional polyhedron P and an ε -map $f: X \to P$.

If X is a 1-dimensional continuum, then for any $\varepsilon>0$, there exists a graph G and an ε -map $f:X\to G$.

• X is tree-like (arc-like) if G can always be chosen to be a tree (arc)

An ε -map is a map $f:X\to Y$ such that for each $y\in Y$, $\operatorname{diam}[f^{-1}(y)]<\varepsilon.$

Theorem (Alexandroff)

Let X be an n-dimensional compact metric space. For any $\varepsilon > 0$, there exists an n-dimensional polyhedron P and an ε -map $f: X \to P$.

If X is a 1-dimensional continuum, then for any $\varepsilon>0$, there exists a graph G and an ε -map $f:X\to G$.

 X is tree-like (arc-like) if G can always be chosen to be a tree (arc) arc-like ≡ chainable

An ε -map is a map $f:X\to Y$ such that for each $y\in Y$, $\operatorname{diam}[f^{-1}(y)]<arepsilon.$

Theorem (Alexandroff)

Let X be an n-dimensional compact metric space. For any $\varepsilon > 0$, there exists an n-dimensional polyhedron P and an ε -map $f: X \to P$.

If X is a 1-dimensional continuum, then for any $\varepsilon>0$, there exists a graph G and an ε -map $f:X\to G$.

• X is tree-like (arc-like) if G can always be chosen to be a tree (arc) arc-like \equiv chainable

Theorem (Oversteegen-Tymchatyn 1984)

If X has span zero, then X is tree-like.

Simple fold on G: graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- ② For i = 1, 3 there is a neighborhood V_i of ∂G_i such that $G_i \cap V_i = G_2 \cap V_i$;
- **3** Each component of $G \setminus G_2$ meets only one of ∂G_1 or ∂G_2 ;
- **4** $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Simple fold on G: graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- ② For i = 1, 3 there is a neighborhood V_i of ∂G_i such that $G_i \cap V_i = G_2 \cap V_i$;
- **3** Each component of $G \setminus G_2$ meets only one of ∂G_1 or ∂G_2 ;
- **4** $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Simple fold on G: graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- **②** For i = 1, 3 there is a neighborhood V_i of ∂G_i such that $G_i \cap V_i = G_2 \cap V_i$;
- **§** Each component of $G \setminus G_2$ meets only one of ∂G_1 or ∂G_2 ;
- \bullet $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f: X \to G$ to a graph G, for any simple fold $\varphi: F \to G$, and for any $\varepsilon > 0$, there exists a map $g: X \to F$ such that $\varphi \circ g =_{\varepsilon} f$.

Simple fold on G: graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- ② For i = 1, 3 there is a neighborhood V_i of ∂G_i such that $G_i \cap V_i = G_2 \cap V_i$;
- **§** Each component of $G \setminus G_2$ meets only one of ∂G_1 or ∂G_2 ;
- \bullet $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f:X\to G$ to a graph G, for any simple fold $\varphi:F\to G$, and for any $\varepsilon>0$, there exists a map $g:X\to F$ such that $\varphi\circ g=_\varepsilon f$.

Simple fold on G: graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- **②** For i = 1, 3 there is a neighborhood V_i of ∂G_i such that $G_i \cap V_i = G_2 \cap V_i$;
- **§** Each component of $G \setminus G_2$ meets only one of ∂G_1 or ∂G_2 ;
- \bullet $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f: X \to G$ to a graph G, for any simple fold $\varphi: F \to G$, and for any $\varepsilon > 0$, there exists a map $g: X \to F$ such that $\varphi \circ g =_{\varepsilon} f$.

Simple fold on G: graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- **②** For i = 1, 3 there is a neighborhood V_i of ∂G_i such that $G_i \cap V_i = G_2 \cap V_i$;
- **3** Each component of $G \setminus G_2$ meets only one of ∂G_1 or ∂G_2 ;
- \bullet $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f:X\to G$ to a graph G, for any simple fold $\varphi:F\to G$, and for any $\varepsilon>0$, there exists a map $g:X\to F$ such that $\varphi\circ g=_\varepsilon f$.

Simple fold on G: graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- **②** For i = 1, 3 there is a neighborhood V_i of ∂G_i such that $G_i \cap V_i = G_2 \cap V_i$;
- **3** Each component of $G \setminus G_2$ meets only one of ∂G_1 or ∂G_2 ;
- **4** $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f:X\to G$ to a graph G, for any simple fold $\varphi:F\to G$, and for any $\varepsilon>0$, there exists a map $g:X\to F$ such that $\varphi\circ g=_\varepsilon f$.

Folding maps

Folding map (or stairwell) on G: graph $F = F_1 \cup \cdots \cup F_k$, where k is odd, and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- ② There is a neighborhood V_i of $B_i = A_{i+1}$ such that $G_i \cap V_i = G_{i+1} \cap V_i$;
- **3** Each component of $G \setminus G_i$ meets only one of A_i or B_i ;
- \bullet $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Folding maps

Folding map (or stairwell) on G: graph $F = F_1 \cup \cdots \cup F_k$, where k is odd, and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- ② There is a neighborhood V_i of $B_i = A_{i+1}$ such that $G_i \cap V_i = G_{i+1} \cap V_i$;
- **3** Each component of $G \setminus G_i$ meets only one of A_i or B_i ;
- \bullet $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Simple fold \equiv folding map with k = 3.

Folding maps

Folding map (or stairwell) on G: graph $F = F_1 \cup \cdots \cup F_k$, where k is odd, and map $\varphi : F \to G$ such that (for $G_i = \varphi(F_i)$):

- \bullet $\partial G_i = A_i \sqcup B_i$, where $A_1 = B_k = \emptyset$ and $B_i = A_{i+1}$;
- ② There is a neighborhood V_i of $B_i = A_{i+1}$ such that $G_i \cap V_i = G_{i+1} \cap V_i$;
- **3** Each component of $G \setminus G_i$ meets only one of A_i or B_i ;
- \bullet $\varphi \upharpoonright_{F_i}$ is a homeomorphism $F_i \to G_i$; and

Simple fold \equiv folding map with k = 3.

Theorem (Oversteegen-H. 2016)

X is hereditarily indecomposable if and only if for any map $f:X\to G$ to a graph G, for any folding map $\varphi:F\to G$, and for any $\varepsilon>0$, there exists a map $g:X\to F$ such that $\varphi\circ g=_\varepsilon f$.

Question

Can one prove a version of the factoring theorem for hereditarily indecomposable continua for a natural generalization of folding maps?

Question

Can one prove a version of the factoring theorem for hereditarily indecomposable continua for a natural generalization of folding maps?

Question

If X is hereditarily indecomposable and weakly chainable (\equiv image of a chainable continuum), must X be chainable?

Question

Can one prove a version of the factoring theorem for hereditarily indecomposable continua for a natural generalization of folding maps?

Question

If X is hereditarily indecomposable and weakly chainable (\equiv image of a chainable continuum), must X be chainable?

Thank you!