A complete classification of homogeneous plane continua

L. C. Hoehn (loganh@nipissingu.ca)

joint with L. G. Oversteegen

Nipissing University

June 25, 2015 30th Summer Conference on Topology and its Applications

All spaces are metric.

X is homogeneous $\equiv \forall x, y \in X \quad \exists h : X \stackrel{\approx}{\to} X \quad h(x) = y$

All spaces are metric.

$$X$$
 is homogeneous $\equiv \forall x, y \in X \quad \exists h : X \stackrel{\approx}{\to} X \quad h(x) = y$

All spaces are metric.

$$X$$
 is homogeneous $\equiv \forall x, y \in X \quad \exists h : X \stackrel{\approx}{\to} X \quad h(x) = y$

All spaces are metric.

$$X$$
 is homogeneous $\equiv \forall x, y \in X \quad \exists h : X \stackrel{\approx}{\rightarrow} X \quad h(x) = y$

All spaces are metric.

X is homogeneous $\equiv \forall x, y \in X \quad \exists h : X \stackrel{\approx}{\to} X \quad h(x) = y$

All spaces are metric.

X is homogeneous $\equiv \forall x, y \in X \quad \exists h : X \stackrel{\approx}{\to} X \quad h(x) = y$

All spaces are metric.

X is homogeneous $\equiv \forall x, y \in X \quad \exists h : X \stackrel{\approx}{\to} X \quad h(x) = y$

Examples: Connected manifolds, topological groups

All spaces are metric.

X is homogeneous $\equiv \forall x, y \in X \exists h : X \stackrel{\approx}{\to} X h(x) = y$

Examples: Connected manifolds, topological groups

Theorem (Mislove-Rogers 1989)

X compact homogeneous \Rightarrow *X* \approx *Y* \times *Z* where *Y* is a homogeneous continuum and *Z* is finite or the Cantor set.

Continuum ≡ compact, connected (metric)

All spaces are metric.

X is homogeneous $\equiv \forall x, y \in X \exists h : X \stackrel{\approx}{\to} X h(x) = y$

Examples: Connected manifolds, topological groups

Theorem (Mislove-Rogers 1989)

X compact homogeneous \Rightarrow *X* \approx *Y* \times *Z* where *Y* is a homogeneous continuum and *Z* is finite or the Cantor set.

 $Continuum \equiv compact, connected (metric)$

Question (Knaster-Kuratowski 1920)

Is the circle the only non-degenerate homogeneous continuum in \mathbb{R}^2 ?

Continuum ≡ compact, connected (metric)

Continuum ≡ compact, connected (metric)

X is *decomposable* $\equiv X = A \cup B$ for some continua $A, B \subsetneq X$

Continuum ≡ compact, connected (metric)

X is decomposable $\equiv X = A \cup B$ for some continua $A, B \subsetneq X$ Indecomposable \equiv not decomposable

Continuum ≡ compact, connected (metric)

X is $decomposable \equiv X = A \cup B$ for some continua $A, B \subsetneq X$ $Indecomposable \equiv$ not decomposable

Continuum ≡ compact, connected (metric)

X is $decomposable \equiv X = A \cup B$ for some continua $A, B \subsetneq X$ $Indecomposable \equiv$ not decomposable

Continuum ≡ compact, connected (metric)

X is decomposable $\equiv X = A \cup B$ for some continua $A, B \subsetneq X$ Indecomposable \equiv not decomposable

 $Hereditarily\ indecomposable \equiv every\ subcontinuum\ is\ indecomposable$

Example (Knaster 1922, Moise 1948, Bing 1948): The *pseudo-arc*.

• Hereditarily indecomposable

- Hereditarily indecomposable
- Homogeneous

- Hereditarily indecomposable
- Homogeneous
- Homeomorphic to each of its subcontinua

- Hereditarily indecomposable
- Homogeneous
- Homeomorphic to each of its subcontinua
- Arc-like $\equiv \forall \varepsilon > 0 \quad \exists f : X \to [0,1]$ whose fibres have diameters $< \varepsilon$

Example (Knaster 1922, Moise 1948, Bing 1948): The *pseudo-arc*.

- Hereditarily indecomposable
- Homogeneous
- Homeomorphic to each of its subcontinua
- Arc-like $\equiv \forall \varepsilon > 0 \quad \exists f : X \to [0,1]$ whose fibres have diameters $< \varepsilon$

Theorem (Bing 1951)

 $X \approx$ pseudo-arc if and only if X is hereditarily indecomposable and arc-like.

Example (Bing-Jones 1959): The *circle of pseudo-arcs*.

Example (Bing-Jones 1959): The *circle of pseudo-arcs*.

Example (Bing-Jones 1959): The *circle of pseudo-arcs*.

Theorem (Jones 1955)

If $M \subset \mathbb{R}^2$ is decomposable homogeneous, then M is a circle of X's, where X is indecomposable homogeneous.

Example (Bing-Jones 1959): The *circle of pseudo-arcs*.

Theorem (Jones 1955)

If $M \subset \mathbb{R}^2$ is decomposable homogeneous, then M is a circle of X's, where X is indecomposable homogeneous.

Theorem (Hagopian 1976)

If $X \subset \mathbb{R}^2$ is indecomposable homogeneous, then X is hereditarily indecomposable.

Homogeneous plane continua and span

X has *span zero* \equiv any continuum Z in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x,x) : x \in X\}$.

Homogeneous plane continua and span

X has $span zero \equiv any continuum <math>Z$ in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x,x) : x \in X\}.$

Theorem (Oversteegen-Tymchatyn 1982)

If $X \subset \mathbb{R}^2$ is indecomposable homogeneous, then X has span zero.

Homogeneous plane continua and span

X has $span zero \equiv any continuum <math>Z$ in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x,x) : x \in X\}.$

Theorem (Oversteegen-Tymchatyn 1982)

If $X \subset \mathbb{R}^2$ is indecomposable homogeneous, then X has span zero.

• Arc-like \Rightarrow span zero

Homogeneous plane continua and span

X has span zero \equiv any continuum Z in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x,x) : x \in X\}$.

Theorem (Oversteegen-Tymchatyn 1982)

If $X \subset \mathbb{R}^2$ is indecomposable homogeneous, then X has span zero.

• Arc-like \Rightarrow span zero

Example (H 2011): \exists a continuum with span zero which is not arc-like.

Homogeneous plane continua and span

X has $span zero \equiv any continuum <math>Z$ in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x,x) : x \in X\}.$

Theorem (Oversteegen-Tymchatyn 1982)

If $X \subset \mathbb{R}^2$ is indecomposable homogeneous, then X has span zero.

 \bullet Arc-like \Rightarrow span zero

Example (H 2011): \exists a continuum with span zero which is not arc-like.

Theorem (Oversteegen-H 2015)

A hereditarily indecomposable continuum with span zero is arc-like (hence \approx pseudo-arc).

Homogeneous plane continua and span

X has $span zero \equiv any continuum <math>Z$ in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x,x) : x \in X\}.$

Theorem (Oversteegen-Tymchatyn 1982)

If $X \subset \mathbb{R}^2$ is indecomposable homogeneous, then X has span zero.

• Arc-like \Rightarrow span zero

Example (H 2011): \exists a continuum with span zero which is not arc-like.

Theorem (Oversteegen-H 2015)

A hereditarily indecomposable continuum with span zero is arc-like (hence \approx pseudo-arc).

Corollary

If $X \subset \mathbb{R}^2$ is a (non-degenerate) homogeneous continuum, then $X \approx$ the circle, the pseudo-arc, or the circle of pseudo-arcs.

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero

Suppose $X \subset [0,1]^{\mathbb{N}}$ has span zero $\Rightarrow X$ is tree-like.

Suppose $X \subset [0,1]^{\mathbb{N}}$ has span zero $\Rightarrow X$ is tree-like.

Theorem

 $\forall \ \varepsilon > 0 \quad \exists \ \delta > 0$ such that if T is a tree and I = [p,q] is an arc, with $d_H(T,X) < \delta$ and $d_H(I,X) < \delta$, then the set

$$M = \{(x, y) \in T \times I : d(x, y) < \varepsilon\}$$

Suppose $X \subset [0,1]^{\mathbb{N}}$ has span zero $\Rightarrow X$ is tree-like.

Theorem

 $\forall \ \varepsilon > 0 \quad \exists \ \delta > 0$ such that if T is a tree and I = [p,q] is an arc, with $d_H(T,X) < \delta$ and $d_H(I,X) < \delta$, then the set

$$M = \{(x, y) \in T \times I : d(x, y) < \varepsilon\}$$

separates $T \times \{p\}$ from $T \times \{q\}$.

Proof.

If not, for some $\varepsilon > 0$ there exist sequences $\langle T_n \rangle$ and $\langle I_n = [p_n, q_n] \rangle$, $n = 1, 2, \ldots$ converging to X, and continua $Z_n \subset T_n \times I_n$ joining $T_n \times \{p_n\}$ to $T_n \times \{q_n\}$, with $d(x,y) \ge \varepsilon$ for all $(x,y) \in Z_n$.

Suppose $X \subset [0,1]^{\mathbb{N}}$ has span zero $\Rightarrow X$ is tree-like.

Theorem

 $\forall \ \varepsilon > 0 \quad \exists \ \delta > 0$ such that if T is a tree and I = [p,q] is an arc, with $d_H(T,X) < \delta$ and $d_H(I,X) < \delta$, then the set

$$M = \{(x, y) \in T \times I : d(x, y) < \varepsilon\}$$

separates $T \times \{p\}$ from $T \times \{q\}$.

Proof.

If not, for some $\varepsilon > 0$ there exist sequences $\langle T_n \rangle$ and $\langle I_n = [p_n, q_n] \rangle$, $n = 1, 2, \ldots$ converging to X, and continua $Z_n \subset T_n \times I_n$ joining $T_n \times \{p_n\}$ to $T_n \times \{q_n\}$, with $d(x,y) \ge \varepsilon$ for all $(x,y) \in Z_n$.

Then $\langle Z_n \rangle$ accumulates on some $Z \subset X \times X$, where $\pi_2(Z) = X$ and $d(x,y) \geq \varepsilon$ for all $(x,y) \in Z$. Thus X has span > 0.

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X \text{ is tree-like})$

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $\ \ (\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f: X \to T$ such that $f =_{\delta} \mathrm{id}_{X}$.

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f: X \to T$ such that $f =_{\delta} \mathrm{id}_{X}$.

Let $I = [p, q] \subset [0, 1]^{\mathbb{N}}$ be such that $d_H(I, X) < \delta$.

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f: X \to T$ such that $f =_{\delta} \operatorname{id}_{X}$.

Let $I = [p, q] \subset [0, 1]^{\mathbb{N}}$ be such that $d_H(I, X) < \delta$.

$$M = \{(x,y) \in T \times I : d(x,y) < \frac{\varepsilon}{3}\}$$

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f: X \to T$ such that $f =_{\delta} \operatorname{id}_{X}$.

Let $I = [p, q] \subset [0, 1]^{\mathbb{N}}$ be such that $d_H(I, X) < \delta$.

$$M = \{(x,y) \in T \times I : d(x,y) < \frac{\varepsilon}{3}\}$$

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f: X \to T$ such that $f =_{\delta} \operatorname{id}_{X}$.

Let
$$I = [p, q] \subset [0, 1]^{\mathbb{N}}$$
 be such that $d_H(I, X) < \delta$.

$$M = \{(x,y) \in T \times I : d(x,y) < \frac{\varepsilon}{3}\}$$

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f: X \to T$ such that $f =_{\delta} \mathrm{id}_X$. Let $I = [p,q] \subset [0,1]^{\mathbb{N}}$ be such that $d_H(I,X) < \delta$.

$$M = \{(x,y) \in T \times I : d(x,y) < \frac{\varepsilon}{3}\}$$

Suppose $X\subset [0,1]^{\mathbb{N}}$ has span zero $(\Rightarrow X$ is tree-like)

Fix $\varepsilon > 0$. Let $\delta \leq \frac{\varepsilon}{3}$.

Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f: X \to T$ such that $f =_{\delta} \mathrm{id}_X$. Let $I = [p,q] \subset [0,1]^{\mathbb{N}}$ be such that $d_H(I,X) < \delta$.

$$M = \{(x,y) \in T \times I : d(x,y) < \frac{\varepsilon}{3}\}$$

separates $T \times \{p\}$ from $T \times \{q\}$.

If $\exists h: X \to M$ such that $\pi_1 \circ h =_{\delta} f$, then $\pi_2 \circ h =_{\varepsilon} \mathrm{id}_X$.

 $Graph \equiv finite union of arcs meeting only in endpoints$

 $Graph \equiv$ finite union of arcs meeting only in endpoints $Simple\ fold$ on a graph G:

- Subgraphs $G_1, G_2, G_3 \subset G$ such that
 - ▶ $G_1 \cup G_3 = G$ and $G_1 \cap G_3 = G_2$;
 - $\overline{G_1 \setminus G_2} \cap \overline{G_3 \setminus G_2} = \emptyset.$
- Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that
 - $\varphi \upharpoonright_{F_i} : F_i \to G_i$ is a homeomorphism for each i = 1, 2, 3;
 - $ightharpoonup \partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Graph \equiv finite union of arcs meeting only in endpoints Simple fold on a graph G:

- Subgraphs $G_1, G_2, G_3 \subset G$ such that
 - ▶ $G_1 \cup G_3 = G$ and $G_1 \cap G_3 = G_2$;
 - $\overline{G_1 \setminus G_2} \cap \overline{G_3 \setminus G_2} = \emptyset.$
- Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that
 - $\varphi \upharpoonright_{F_i} : F_i \to G_i$ is a homeomorphism for each i = 1, 2, 3;
 - $ightharpoonup \partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Graph \equiv finite union of arcs meeting only in endpoints Simple fold on a graph G:

- Subgraphs $G_1, G_2, G_3 \subset G$ such that
 - ▶ $G_1 \cup G_3 = G$ and $G_1 \cap G_3 = G_2$;
 - $\overline{G_1 \setminus G_2} \cap \overline{G_3 \setminus G_2} = \emptyset.$
- Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that
 - $\varphi \upharpoonright_{F_i} : F_i \to G_i$ is a homeomorphism for each i = 1, 2, 3;
 - $ightharpoonup \partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f:X\to G$ to a graph G, for any simple fold $\varphi:F\to G$, and for any $\varepsilon>0$, there exists a map $g:X\to F$ such that $\varphi\circ g=_\varepsilon f$.

 $Graph \equiv finite union of arcs meeting only in endpoints$ Simple fold on a graph <math>G:

- Subgraphs $G_1, G_2, G_3 \subset G$ such that
 - ▶ $G_1 \cup G_3 = G$ and $G_1 \cap G_3 = G_2$;
- Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that
 - $\varphi \upharpoonright_{F_i} : F_i \to G_i$ is a homeomorphism for each i = 1, 2, 3;
 - $ightharpoonup \partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f: X \to G$ to a graph G, for any simple fold $\varphi: F \to G$, and for any $\varepsilon > 0$, there exists a map $g: X \to F$ such that $\varphi \circ g =_{\varepsilon} f$.

Graph \equiv finite union of arcs meeting only in endpoints Simple fold on a graph G:

- Subgraphs $G_1, G_2, G_3 \subset G$ such that
 - ▶ $G_1 \cup G_3 = G$ and $G_1 \cap G_3 = G_2$;
 - $\overline{G_1 \setminus G_2} \cap \overline{G_3 \setminus G_2} = \emptyset.$
- Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that
 - $\varphi \upharpoonright_{F_i} : F_i \to G_i$ is a homeomorphism for each i = 1, 2, 3;
 - $ightharpoonup \partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f: X \to G$ to a graph G, for any simple fold $\varphi: F \to G$, and for any $\varepsilon > 0$, there exists a map $g: X \to F$ such that $\varphi \circ g =_{\varepsilon} f$.

 $Graph \equiv$ finite union of arcs meeting only in endpoints $Simple\ fold$ on a graph G:

- Subgraphs $G_1, G_2, G_3 \subset G$ such that
 - ▶ $G_1 \cup G_3 = G$ and $G_1 \cap G_3 = G_2$;
- Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that
 - $\varphi \upharpoonright_{F_i} : F_i \to G_i$ is a homeomorphism for each i = 1, 2, 3;
 - $ightharpoonup \partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f:X\to G$ to a graph G, for any simple fold $\varphi:F\to G$, and for any $\varepsilon>0$, there exists a map $g:X\to F$ such that $\varphi\circ g=_\varepsilon f$.

 $Graph \equiv$ finite union of arcs meeting only in endpoints Simple fold on a graph G:

- Subgraphs $G_1, G_2, G_3 \subset G$ such that
 - ▶ $G_1 \cup G_3 = G$ and $G_1 \cap G_3 = G_2$;
- Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that
 - $\varphi \upharpoonright_{F_i} : F_i \to G_i$ is a homeomorphism for each i = 1, 2, 3;
 - $ightharpoonup \partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

X is hereditarily indecomposable if and only if for any map $f:X\to G$ to a graph G, for any simple fold $\varphi:F\to G$, and for any $\varepsilon>0$, there exists a map $g:X\to F$ such that $\varphi\circ g=_\varepsilon f$.

Define $h: X \to M$ by $h = (\varphi \times id) \circ \theta \circ g$.

Question

What are all 1-dimensional homogeneous continua?

Question

What are all 1-dimensional homogeneous continua?

Question (Jones 1955)

If X is a homogeneous tree-like continuum, is $X \approx$ pseudo-arc?

Question

What are all 1-dimensional homogeneous continua?

Question (Jones 1955)

If X is a homogeneous tree-like continuum, is $X \approx$ pseudo-arc?

Question (cf. Mohler 1995)

If X is a weakly chainable and hereditarily indecomposable continuum, is $X \approx \text{pseudo-arc}$?

Question

What are all 1-dimensional homogeneous continua?

Question (Jones 1955)

If X is a homogeneous tree-like continuum, is $X \approx$ pseudo-arc?

Question (cf. Mohler 1995)

If X is a weakly chainable and hereditarily indecomposable continuum, is $X \approx \text{pseudo-arc}$?

Thank you!